29 research outputs found

    Understanding vision: students’ use of light and optics resources

    Get PDF
    We present a qualitative study designed to examine how students construct an understanding of the human eye and vision from their knowledge of light and optics. As would be expected, vast differences are shown to exist between pre- and post-instruction students in terms of not only resource use, but also willingness to transfer their existing knowledge. However, we have found that appropriate scaffolding can facilitate resource activation and guide students to construct an understanding of vision and vision defects

    An introduction to the theme issue

    Get PDF
    Citation: Zollman, D. A., & Brown, D. (2016). An introduction to the theme issue. American Journal of Physics, 84(5), 325-326. doi:10.1119/1.4943960When the topic for the 2016 Gordon Research Conference (GRC) on physics research and education was selected in 2012, the timing seemed appropriate. Albert Einstein had explained in 1916 how his general theory of relativity predicted the existence of gravitational waves. Four years ago we could not have imagined that just a few months before this conference the detection of gravitational waves from the collision of two black holes would be announced. Thus, while the physics and education GRC is unique among Gordon Conferences, this one will be even more special in that it will be the first conference to bring together researchers and educators so shortly after a major discovery in the field. The increase in interest in fundamental science generated by this historic announcement is already evident, and the conference will provide a great opportunity to discuss better ways to teach students about relativity and gravitation

    Student Explorations of Quantum Effects in LEDs and Luninescent Devices

    Get PDF
    We developed activity-based instructional units to introduce basic quantum principles to students with limited physics and mathematics backgrounds. To emphasize the practical applications of contemporary physics, we introduced concepts using the contexts of light-emitting devices such as light-emitting diodes (LEDs), fluorescent lamps, and glow-in-the-dark toys. As our standard of living becomes more dependent on the latest developments in science and technology, our students\u27 literacy must be at a level that enables them to make educated decisions on science- and technology-related issues and their everyday applications. Students need to have at least a basic understanding of 20th-century physics and its applications in order to make informed decisions about them. Unfortunately, many physics teachers either exclude or spend very little time on modern topics such as quantum mechanics in high school physics courses.1,2 The high degree of mathematical formalism and abstract nature of quantum mechanics is frequently given as a reason for not introducing quantum physics in high school physics courses.3,

    Student Explorations of Quantum Effects in LEDs and Luninescent Devices

    Get PDF
    We developed activity-based instructional units to introduce basic quantum principles to students with limited physics and mathematics backgrounds. To emphasize the practical applications of contemporary physics, we introduced concepts using the contexts of light-emitting devices such as light-emitting diodes (LEDs), fluorescent lamps, and glow-in-the-dark toys. As our standard of living becomes more dependent on the latest developments in science and technology, our students\u27 literacy must be at a level that enables them to make educated decisions on science- and technology-related issues and their everyday applications. Students need to have at least a basic understanding of 20th-century physics and its applications in order to make informed decisions about them. Unfortunately, many physics teachers either exclude or spend very little time on modern topics such as quantum mechanics in high school physics courses.1,2 The high degree of mathematical formalism and abstract nature of quantum mechanics is frequently given as a reason for not introducing quantum physics in high school physics courses.3,

    Automated analysis of short responses in an interactive synthetic tutoring system for introductory physics

    Get PDF
    Citation: Nakamura, C. M., Murphy, S. K., Christel, M. G., Stevens, S. M., & Zollman, D. A. (2016). Automated analysis of short responses in an interactive synthetic tutoring system for introductory physics. Physical Review Physics Education Research, 12(1), 16. doi:10.1103/PhysRevPhysEducRes.12.010122Computer-automated assessment of students' text responses to short-answer questions represents an important enabling technology for online learning environments. We have investigated the use of machine learning to train computer models capable of automatically classifying short-answer responses and assessed the results. Our investigations are part of a project to develop and test an interactive learning environment designed to help students learn introductory physics concepts. The system is designed around an interactive video tutoring interface. We have analyzed 9 with about 150 responses or less. We observe for 4 of the 9 automated assessment with interrater agreement of 70% or better with the human rater. This level of agreement may represent a baseline for practical utility in instruction and indicates that the method warrants further investigation for use in this type of application. Our results also suggest strategies that may be useful for writing activities and questions that are more appropriate for automated assessment. These strategies include building activities that have relatively few conceptually distinct ways of perceiving the physical behavior of relatively few physical objects. Further success in this direction may allow us to promote interactivity and better provide feedback in online learning systems. These capabilities could enable our system to function more like a real tutor

    Oersted Lecture 2014: Physics education research and teaching modern Modern Physics

    Get PDF
    Citation: Zollman, D. (2016). Oersted Lecture 2014: Physics education research and teaching modern Modern Physics. American Journal of Physics, 84(8), 573-580. doi:10.1119/1.4953824Modern Physics has been used as a label for most of physics that was developed since the discovery of X-rays in 1895. Yet, we are teaching students who would not use the label "modern" for anything that happened before about 1995, when they were born. So, are we and our students in worlds that differ by a century? In addition to content, sometimes our students and we have differing views about methods and styles of teaching. A modern course in any topic of physics should include applications of contemporary research in physics education and the learning sciences as well as research and developments in methods of delivering the content. Thus, when we consider teaching Modern Physics, we are challenged with deciding what the content should be, how to adjust for the ever increasing information on how students learn physics, and the constantly changing tools that are available to us for teaching and learning. When we mix all of these together, we can teach modern Modern Physics or maybe teach Modern Physics modernly. © 2016 American Association of Physics Teachers

    Students' Models of Newton's Second Law in Mechanics and Electromagnetism

    Full text link
    We investigated students' use of Newton's second law in mechanics and electromagnetism contexts by interviewing students in a two-semester calculus-based physics course. We observed that students' responses are consistent with three mental models. These models appeard in mechanics contexts and were transferred to electromagnetism contexts. We developed an inventory to help instructors identify these models and direct students towards the correct one.Comment: 15 pages, 3 figues and 4 table
    corecore